Ground truth is a term used in cartography, meteorology, analysis of aerial photographs, satellite imagery and a range of other remote sensing techniques in which data are gathered at a distance. Ground truth refers to information that is collected "on location". In remote sensing, this is especially important in order to relate image data to real features and materials on the ground. The collection of ground-truth data enables calibration of remote-sensing data, and aids in the interpretation and analysis of what is being sensed.
More specifically, ground truth may refer to a process in which a pixel on a satellite image is compared to what is there in reality (at the present time) in order to verify the contents of the pixel on the image. In the case of a classified image, it allows supervised classification to help determine the accuracy of the classification performed by the remote sensing software and therefore minimize errors in the classification such as errors of commission and errors of omission.
Ground truth is usually done on site, performing surface observations and measurements of various properties of the features of the ground resolution cells that are being studied on the remotely sensed digital image. It also involves taking geographic coordinates of the ground resolution cell with GPS technology and comparing those with the coordinates of the pixel being studied provided by the remote sensing software to understand and analyze the location errors and how it may affect a particular study.
Ground truth is important in the initial supervised classification of an image. When the identity and location of land cover types are known through a combination of field work, maps, and personal experience these areas are known as training sites. The spectral characteristics of these areas are used to train the remote sensing software using decision rules for classifying the rest of the image. These decision rules such as Maximum Likelihood Classification, Parallelepiped Classification, and Minimum Distance Classification offer different techniques to classify an image. Additional ground truth sites allow the remote sensor to establish an error matrix which validates the accuracy of the classification method used. Different classification methods may have different percentages of error for a given classification project. It is important that the remote sensor chooses a classification method that works best with the number of classifications used while providing the least amount of error.
Ground truth also helps with atmospheric correction. Since images from satellites obviously have to pass through the atmosphere, they can get distorted because of absorption in the atmosphere. So ground truth can help fully identify objects in satellite photos.
(PS: All data from Wikipedia)
No comments:
Post a Comment