Sunday, November 15, 2009

linux 进程间通信--共享内存

作者:郑彦兴 (mlinux@163.com), 国防科大攻读博士学位
 
共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式。两个不同进程A、B共享内存的意思是,同一块物理内存被映射到进程A、B各自的进程地址空间。进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。由于多个进程共享同一块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据[1]:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。
 
范例1包含两个子程序:map_normalfile1.c及map_normalfile2.c。编译两个程序,可执行文件分别为 map_normalfile1及map_normalfile2。两个程序通过命令行参数指定同一个文件来实现共享内存方式的进程间通信。 map_normalfile2试图打开命令行参数指定的一个普通文件,把该文件映射到进程的地址空间,并对映射后的地址空间进行写操作。 map_normalfile1把命令行参数指定的文件映射到进程地址空间,然后对映射后的地址空间执行读操作。这样,两个进程通过命令行参数指定同一个文件来实现共享内存方式的进程间通信。
 
/*-------------map_normalfile1.c-----------*/ #include <sys/mman.h> #include <sys/types.h> #include <fcntl.h> #include <unistd.h> typedef struct{ 	char name[4]; 	int  age; }people; main(int argc, char** argv) // map a normal file as shared mem: { 	int fd,i; 	people *p_map; 	char temp; 	 	fd=open(argv[1],O_CREAT|O_RDWR|O_TRUNC,00777); 	lseek(fd,sizeof(people)*5-1,SEEK_SET); 	write(fd,"",1); 	 	p_map = (people*) mmap( NULL,sizeof(people)*10,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0 ); 	close( fd ); 	temp = 'a'; 	for(i=0; i<10; i++) 	{ 		temp += 1; 		memcpy( ( *(p_map+i) ).name, &temp,2 ); 		( *(p_map+i) ).age = 20+i; 	} 	printf(" initialize over \n "); 	sleep(10); 	munmap( p_map, sizeof(people)*10 ); 	printf( "umap ok \n" ); }
/*-------------map_normalfile2.c-----------*/ #include <sys/mman.h> #include <sys/types.h> #include <fcntl.h> #include <unistd.h> typedef struct{ 	char name[4]; 	int  age; }people; main(int argc, char** argv)	// map a normal file as shared mem: { 	int fd,i; 	people *p_map; 	fd=open( argv[1],O_CREAT|O_RDWR,00777 ); 	p_map = (people*)mmap(NULL,sizeof(people)*10,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0); 	for(i = 0;i<10;i++) 	{ 	printf( "name: %s age %d;\n",(*(p_map+i)).name, (*(p_map+i)).age ); 	} 	munmap( p_map,sizeof(people)*10 ); }

map_normalfile1.c首先定义了一个people数据结构,(在这里采用数据结构的方式是因为,共享内存区的数据往往是有固定格式的,这由通信的各个进程决定,采用结构的方式有普遍代表性)。map_normfile1首先打开或创建一个文件,并把文件的长度设置为5个people 结构大小。然后从mmap()的返回地址开始,设置了10个people结构。然后,进程睡眠10秒钟,等待其他进程映射同一个文件,最后解除映射。

map_normfile2.c只是简单的映射一个文件,并以people数据结构的格式从mmap()返回的地址处读取10个people结构,并输出读取的值,然后解除映射。

分别把两个程序编译成可执行文件map_normalfile1和map_normalfile2后,在一个终端上先运行./map_normalfile2 /tmp/test_shm,程序输出结果如下:

initialize over umap ok
在map_normalfile1输出initialize over 之后,输出umap ok之前,在另一个终端上运行map_normalfile2 /tmp/test_shm,将会产生如下输出(为了节省空间,输出结果为稍作整理后的结果):
name: b	age 20;	name: c	age 21;	name: d	age 22;	name: e	age 23;	name: f	age 24; name: g	age 25;	name: h	age 26;	name: I	age 27;	name: j	age 28;	name: k	age 29; 在map_normalfile1 输出umap ok后,运行map_normalfile2则输出如下结果:
name: b	age 20;	name: c	age 21;	name: d	age 22;	name: e	age 23;	name: f	age 24; name:	age 0;	name:	age 0;	name:	age 0;	name:	age 0;	name:	age 0; 

从程序的运行结果中可以得出的结论

1、 最终被映射文件的内容的长度不会超过文件本身的初始大小,即映射不能改变文件的大小;

2、可以用于进程通信的有效地址空间大小大体上受限于被映射文件的大小,但不完全受限于文件大小。打开文件被截短为5个people结构大小,而在 map_normalfile1中初始化了10个people数据结构,在恰当时候(map_normalfile1输出initialize over 之后,输出umap ok之前)调用map_normalfile2会发现map_normalfile2将输出全部10个people结构的值,后面将给出详细讨论。
注:在linux中,内存的保护是以页为基本单位的,即使被映射文件只有一个字节大小,内核也会为映射分配一个页面大小的内存。当被映射文件小于一个页面大小时,进程可以对从mmap()返回地址开始的一个页面大小进行访问,而不会出错;但是,如果对一个页面以外的地址空间进行访问,则导致错误发生,后面将进一步描述。因此,可用于进程间通信的有效地址空间大小不会超过文件大小及一个页面大小的和。

3、文件一旦被映射后,调用mmap()的进程对返回地址的访问是对某一内存区域的访问,暂时脱离了磁盘上文件的影响。所有对mmap()返回地址空间的操作只在内存中有意义,只有在调用了munmap()后或者msync()时,才把内存中的相应内容写回磁盘文件,所写内容仍然不能超过文件的大小。

 

范例2:父子进程通过匿名映射实现共享内存

#include <sys/mman.h> #include <sys/types.h> #include <fcntl.h> #include <unistd.h> typedef struct{ 	char name[4]; 	int  age; }people; main(int argc, char** argv) { 	int i; 	people *p_map; 	char temp; 	p_map=(people*)mmap(NULL,sizeof(people)*10,PROT_READ|PROT_WRITE,MAP_SHARED|MAP_ANONYMOUS,-1,0); 	if(fork() == 0) 	{ 		sleep(2); 		for(i = 0;i<5;i++) 			printf("child read: the %d people's age is %d\n",i+1,(*(p_map+i)).age); 		(*p_map).age = 100; 		munmap(p_map,sizeof(people)*10); //实际上,进程终止时,会自动解除映射。 		exit(); 	} 	temp = 'a'; 	for(i = 0;i<5;i++) 	{ 		temp += 1; 		memcpy((*(p_map+i)).name, &temp,2); 		(*(p_map+i)).age=20+i; 	} 	sleep(5); 	printf( "parent read: the first people,s age is %d\n",(*p_map).age ); 	printf("umap\n"); 	munmap( p_map,sizeof(people)*10 ); 	printf( "umap ok\n" ); } 

考察程序的输出结果,体会父子进程匿名共享内存:

child read: the 1 people's age is 20 child read: the 2 people's age is 21 child read: the 3 people's age is 22 child read: the 4 people's age is 23 child read: the 5 people's age is 24 parent read: the first people,s age is 100 umap umap ok 

四、对mmap()返回地址的访问

前面对范例运行结构的讨论中已经提到,linux采用的是页式管理机制。对于用mmap()映射普通文件来说,进程会在自己的地址空间新增一块空间,空间大小由mmap()的len参数指定,注意,进程并不一定能够对全部新增空间都能进行有效访问。进程能够访问的有效地址大小取决于文件被映射部分的大小。简单的说,能够容纳文件被映射部分大小的最少页面个数决定了进程从mmap()返回的地址开始,能够有效访问的地址空间大小。超过这个空间大小,内核会根据超过的严重程度返回发送不同的信号给进程。可用如下图示说明:



注意:文件被映射部分而不是整个文件决定了进程能够访问的空间大小,另外,如果指定文件的偏移部分,一定要注意为页面大小的整数倍。下面是对进程映射地址空间的访问范例:

#include <sys/mman.h> #include <sys/types.h> #include <fcntl.h> #include <unistd.h> typedef struct{ 	char name[4]; 	int  age; }people; main(int argc, char** argv) { 	int fd,i; 	int pagesize,offset; 	people *p_map; 	 	pagesize = sysconf(_SC_PAGESIZE); 	printf("pagesize is %d\n",pagesize); 	fd = open(argv[1],O_CREAT|O_RDWR|O_TRUNC,00777); 	lseek(fd,pagesize*2-100,SEEK_SET); 	write(fd,"",1); 	offset = 0;	//此处offset = 0编译成版本1;offset = pagesize编译成版本2 	p_map = (people*)mmap(NULL,pagesize*3,PROT_READ|PROT_WRITE,MAP_SHARED,fd,offset); 	close(fd); 	 	for(i = 1; i<10; i++) 	{ 		(*(p_map+pagesize/sizeof(people)*i-2)).age = 100; 		printf("access page %d over\n",i); 		(*(p_map+pagesize/sizeof(people)*i-1)).age = 100; 		printf("access page %d edge over, now begin to access page %d\n",i, i+1); 		(*(p_map+pagesize/sizeof(people)*i)).age = 100; 		printf("access page %d over\n",i+1); 	} 	munmap(p_map,sizeof(people)*10); } 

如程序中所注释的那样,把程序编译成两个版本,两个版本主要体现在文件被映射部分的大小不同。文件的大小介于一个页面与两个页面之间(大小为:pagesize*2-99),版本1的被映射部分是整个文件,版本2的文件被映射部分是文件大小减去一个页面后的剩余部分,不到一个页面大小(大小为:pagesize-99)。程序中试图访问每一个页面边界,两个版本都试图在进程空间中映射pagesize*3的字节数。

版本1的输出结果如下:

pagesize is 4096 access page 1 over access page 1 edge over, now begin to access page 2 access page 2 over access page 2 over access page 2 edge over, now begin to access page 3 Bus error		//被映射文件在进程空间中覆盖了两个页面,此时,进程试图访问第三个页面 

版本2的输出结果如下:

pagesize is 4096 access page 1 over access page 1 edge over, now begin to access page 2 Bus error		//被映射文件在进程空间中覆盖了一个页面,此时,进程试图访问第二个页面 

结论:采用系统调用mmap()实现进程间通信是很方便的,在应用层上接口非常简洁。内部实现机制区涉及到了linux存储管理以及文件系统等方面的内容,可以参考一下相关重要数据结构来加深理解。在本专题的后面部分,将介绍系统v共享内存的实现。

No comments:

Post a Comment