# repmat - Replicate and tile array

## Syntax

`B = repmat(A,m,n)B = repmat(A,[m n])B = repmat(A,[m n p...])`

## Description

`B = repmat(A,m,n)` creates a large matrix `B` consisting of an `m`-by-`n` tiling of copies of `A`. The size of `B` is `[size(A,1)*m`, `(size(A,2)*n`]. The statement `repmat(A,n`) creates an `n`-by-`n` tiling.

`B = repmat(A,[m n])` accomplishes the same result as `repmat(A,m,n)`.

`B = repmat(A,[m n p...])` produces a multidimensional array `B` composed of copies of `A`. The size of `B` is `[size(A,1)*m`, `size(A,2)*n`, `size(A,3)*p`, `...`].

## Remarks

`repmat(A,m,n)`, when `A` is a scalar, produces an `m`-by-`n` matrix filled with `A`'s value and having `A`'s `class`. For certain values, you can achieve the same results using other functions, as shown by the following examples:

`repmat(NaN,m,n)`returns the same result as`NaN(m,n)`.`repmat(single(inf),m,n)`is the same as`inf(m,n,'single')`.`repmat(int8(0),m,n)`is the same as`zeros(m,n,'int8')`.`repmat(uint32(1),m,n)`is the same as`ones(m,n,'uint32')`.`repmat(eps,m,n)`is the same as`eps(ones(m,n))`.

## Examples

In this example, `repmat` replicates 12 copies of the second-order identity matrix, resulting in a "checkerboard" pattern.

B = repmat(eye(2),3,4)&eye() creats an identity matrix B =

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

The statement `N = repmat(NaN,[2 3])` creates a `2`-by-`3` matrix of `NaN`s.

NOTE: Obtain from Matlab official website

## No comments:

## Post a Comment